The complexity of the machinery by which our cells run is so extreme that one of the key questions in biological research is, why doesn’t the whole thing just collapse like a house of cards in a tornado? Another way of phrasing this question is to ask, where does the information come from to keep everything running smoothly?
Consider this: the crucial task of gene regulation is carried out in large part by transcription factors, regulatory proteins that recognize and bind to very short, degenerate DNA sequences located somewhere in the rough (sometimes very rough) vicinity of genes. Once they bind, transcription factors recruit the machinery that activates their target genes. (You can also have transcription factors that repress target genes.) This is all good, until you consider the fact that a human transcription factor has to find its target sequences from among the 3 billion base pairs in the human genome. Some plant and fish transcription factors have to search through genomes with more than 100 billions base pairs. So the question is, why don’t transcription factors get lost? Where are they asking for directions?
On finding needles in the genomic haystack Continue reading “The genome is a huge haystack. How do you find the needle?”