This month there has been a bit of a dust-up over the question of how much of our genome is functional. ENCODE results say 80% – or do they? Is it 20%? Or more like 8%?
Did ENCODE scientists play fast and loose with the definition of function, or is genome function legitimately defined as those activities the consortium measured? Is functional DNA something that has an effect on phenotype? (Does that include damaging gain-of-function mutations?) Is functional DNA only that DNA present in your genome because of natural selection? (Then what about hitchhiker alleles?) Is a novel mutation existing in only a single individual functional if that mutation is ultimately destined to become fixed in the population by natural selection?
We have to face the fact that, like much else in biology, boundaries between categories are fluid. It makes no sense to try to cleanly divide the genome into functional and non-functional elements. Even what seems like an obvious boundary line, the boundary between protein-coding and non-coding DNA is blurry: many coding regions have cis-regulatory sites with a non-coding, functional role. To divide the genome into categories of coding- and non-coding function, or function and non-function, may satisfy our insatiable desire to classify for our own cognitive comfort, but from the perspective of the cell there is no such distinction. Continue reading “The non-functional concept of genome function”