Newton and Thomas Pynchon

If you’re a fan of Thomas Pynchon, you may be interested in something I wrote about Newton, thermodynamics, and Pynchon’s story “Entropy” over at ThomasPynchon.com.

The gist of it is this: Pynchon signed two copies of his famous story “Entropy” with the inscription F = ma, that is, Newton’s second law. Why would he do that? What does Newton’s second law have to do with entropy?

I discuss the science that relates F = ma to entropy, and speculate on what Pynchon might have meant.

And BTW, stay tuned for more on science in Pynchon’s work.

The FDA is not holding back effective drugs

It’s going unnoticed amidst the news of the rolling disaster that is the incoming Trump administration, but our lame duck Congress has just passed a major piece of legislation called the 21st century cures act. Scientists are happy about the extra $5 billion this bill gives to the NIH – sort of. That money has to go to specific programs, like the Precision Medicine Initiative and Biden’s Moonshot program, rather than being put into the general funds of the NIH, meaning that Congress, and not the NIH, is deciding what specific research to fund. That’s generally not a good idea, but more money toward broad research and translational initiatives like cancer and precision medicine is still a net win.

More controversial are the FDA provisions of this bill. The bill pushes the FDA to take into account other, often less rigorous types of clinical studies when it decides whether or not to approve a new drug. Some worry that this means drug companies will have more leeway to push unsafe or ineffective drugs on the market. I’m more ambivalent – there are cases (drugs for rare diseases) when double blind randomized clinical trials may not be right, and the FDA should have the flexibility to demand the best evidence appropriate to each case. If – and this is a big if as we look ahead – we trust that the FDA can stand up to industry pressure, than giving them more flexibility to follow best scientific practices is the way to go.

My bigger problem with the FDA provisions are that the premise is flawed. As I write in Pacific Standard this week, the bill’s sponsors argue that, by cutting regulations and red tape at the FDA, we’ll free new cures that are just waiting to be put into the hands of patients. That’s wrong – the FDA is not the rate limiting step here. There is no backlog of effective new drugs just waiting to be approved.

Go check out my piece for the details. The rate limiting step is the science. Medical science is hard, and diseases are understood imperfectly. If you want more effective drugs faster, we need to invest more in research.

The Genetic Nightmare of Diabetes

After 10 years of genomic studies, our understanding of the genetic architecture of diabetes is… still a mess. Or, if you prefer, a nightmare. That’s the message of the most extensive Type 2 Diabetes GWAS to date. Looking for rare genetic variants linked with diabetes, researchers performed whole-genome or exome sequencing on 15,000 people… and came up with nothing new.

This is an important negative result, in that it advances our knowledge of the genetic architecture of diabetes – odds are that many common genetic variants, each with individual small effects, contribute to one’s total genetic risk for the disease. It also illustrates just how hard it will be to realize the goals of personalized medicine. So let’s avoid the hype when we talk about how genomics is going to revolutionize medicine.

I explain the study and its implications in my piece this week at Pacific Standard.  Go read it to learn more about the challenges ahead that face personalized medicine.

Apocalypse 1913: Adrift In A Hostile Cosmos

Arthur Conan Doyle’s The Poison Belt (1913)

415px-Strandus-1913-05End of the world narratives are typically about a fight for survival – people fight for food, shelter, and safety as the asteroid, pandemic plague, or zombie hordes threaten to wipe out human life. This was just as true of SF a century ago as it is today: In 1912, Jack London’s The Scarlet Plague featured armed Berkeley professors, holed up in the chemistry building as a plague swept away civilization; while Garrett Serviss’ The Second Deluge tells of a thousand lucky survivors who, in a modern ark, escape a world-wide flood.

The next year, Arthur Conan Doyle also published a novel about a group of hardy survivors. But the terms of survival in The Poison Belt are much more ironic: Professor Challenger and his fellow adventurers, who had fought off dinosaurs and ape-men on a remote South American plateau in Doyle’s 1912 The Lost World, now confront the extinction of human life as passive observers, watching the destruction of humanity from the window of the “charmingly feminine sitting room” of Professor Challenger’s wife. Continue reading “Apocalypse 1913: Adrift In A Hostile Cosmos”

Off-the-shelf drugs against Zika

As with the ebola outbreak on 2014, we’re facing the Zika pandemic without any drugs or vaccines.  Several rapidly developed Zika vaccines are now entering clinical trial, but we urgently need effective drugs that we can give to infected pregnant women, to protect their unborn children from the awful birth defects that the virus can cause.

Drug development takes a long time. However, one group at the University of Texas Galveston tried a short-cut: test drugs that are already approved by the FDA to see if any can prevent Zika infections. They tested 700 drugs in vitro (i.e., i cells in a petri dish) and found 20 that showed some efficacy in different cell types. Some of these are safe to give to pregnant women, and at least one, ivernectin is a cheap anti-parasite drug already taken by millions of people world-wide.

Obviously whether any of these drugs are effective in actual people is an open question. But the beauty of this is that the safety of these drugs has already been tested. We can start enrolling people in clinical trials to test their efficacy now.

I wrote more about this story over at Pacific Standard – go give it a read.